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Abstract
The critical properties of a ferrimagnetic spinel system (AB2X4, A and B are magnetic ions) are
studied by the method of exact high-temperature series expansions. Terms up to seventh order
were computed for the magnetic susceptibility χ = ∑7

n=0 an(
1

kBT )n . The calculations are given
for the three nearest neighbours’ exchange integrals JAA, JAB and JBB. The Padé approximants
method is used to estimate the critical exponent γ associated with the magnetic susceptibility.
A net variation of γ with exchange couplings has been observed. This variation presents some
unusual characteristics. The magnetic asymmetric interactions and the competition between
the exchange interactions are important for the magnetic phase transition in ferrimagnetic
spinels.

We make comparisons with experiment by studying real Heisenberg spinel ferrite systems
ACr2S4 (A = Fe, Co). The results of γ and Tc obtained by the present approach are in
agreement with the experimental values.

1. Introduction

The magnetic phase transitions and critical phenomena of
frustrated magnetic systems have been extensively studied
during the last decade (for reviews see [1]). Due to the
extra degree of freedom arising from the degeneracy of
the ground state of such a system, the nature of magnetic
phase transitions can be entirely different from that of a
non-frustrated compound. Among frustrated materials which
display nonconventional magnetic properties are those with the
spinel structure [2–9].

The magnetic spinel systems of the form AB2X4 (space
group Fd 3̄m) constitute a class of materials which are very
suitable to study new types of magnetic behaviours induced
by various degrees and types of disorder and frustration.
These systems have received considerable attention for their
interesting electrical and magnetic properties [10–12].

3 Author to whom any correspondence should be addressed.

The case of ferrimagnetic spinel compounds with two
magnetic sublattices A and B are particularly interesting
because they may exhibit particular disordered magnetic ions
in different sites. The ordered structure may be considered
to consist of six interpenetrating face-centred cubic lattices,
two consisting of A-sites and four of B-sites. The magnetic
structures depend on the types of magnetic ions residing in
the tetrahedral (A), the octahedral (B) sites and the relative
strengths of the inter-(JAB) and intra-sublattice interactions
(JAA, JBB). In general, all the three exchange interactions JAA,
JBB and JAB are negative. Furthermore, when all the metal ions
(cations) are magnetic, usually the inter-sublattice interaction
JAB is the strongest with |JAB| � |JBB| > |JAA|. Thus, JAB

renders the spinel system as ferrimagnetic with A-site moments
aligned antiparallel to the B-site moments keeping the A–A
and B–B couplings inherently frustrated [13].

The determination of critical exponents is an important
aspect of the theoretical description and experimental
characterization of magnetic systems [14]. Competition
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between interactions causes various intriguing phenomena in
some magnetic systems. When the spin has a continuous
degree of freedom, as in the case of the Heisenberg model,
the competition often gives rise to noncollinear spin orderings.
Such noncollinear spin orderings are characterized by new
types of symmetry which differ from those characterizing the
collinear or unfrustrated magnets [15].

High-temperature series expansions (HTSEs) are used to
examine the dependence of the critical exponent γ associated
with the magnetic susceptibility upon relative strengths of
the inter-(JAB) and intra-sublattice interactions (JAA, JBB) in
ferrimagnetic spinels.

The HTSE method considered here has been widely
developed [16–20] because it is one of the most powerful and
rigorous ways to study physical systems. It provides valid
estimations of critical temperatures for real magnetic systems.
Hoping to obtain more information on the critical properties
of Heisenberg ferrimagnetic spinels, we have computed the
seventh-order term in a high-temperature series expansion for
two sublattices with arbitrary spins. We derived the series of
magnetic susceptibilities in powers of β = 1

kB T with nearest
neighbour exchange couplings (JAA, JBB, JAB).

The Padé approximants (PA) [21] analysis of the exact
HTSEs of the magnetic susceptibility has been used for
computing the value of critical exponent γ and the critical
temperature Tc.

We make comparison with experiment by studying real
Heisenberg spinel ferrite systems ACr2S4 (A = Fe, Co) which
has recently attracted considerable attention due to their
colossal magnetoresistance effect [22]. The obtained results
of γ and Tc by the present approach are in agreement with the
experimental ones

2. High-temperature series expansions

In order to deduce the expression for the magnetic
susceptibility of the ferrimagnetic spinel with two sublattices,
the Hamiltonian of the semi-classical Heisenberg spin model is
given as:

H = −2JAA

∑

〈i,i ′〉
�Si �Si ′ − 2JBB

∑

〈 j, j ′〉
�σ j �σ j ′ − 2JAB

∑

〈i, j〉
�Si �σ j

− μBhex

(

gA

∑

i

Sz
i − gB

∑

j

σ z
j

)

, (1)

where �S and �σ are spin vectors of magnitudes �S2 = S(S + 1)

and �σ 2 = σ(σ + 1), in sublattice A and B respectively. gA and
gB are the corresponding gyromagnetic factors and μB is the
Bohr magneton. hex is an external magnetic field (z direction)
introduced in order to provide an easy determination of the
magnetic susceptibility. The first summation is over all spin
pair nearest-neighbours in sublattice A, the second is over all
spin pair nearest-neighbours in sublattice B and the third is
between all spin pair nearest-neighbours in A and B. JAA, JBB

and JAB are the intra-and inter-sublattice exchange interactions
between neighbouring spins.

The magnetization of the ferrimagnetic system is given by:

M = μB

(

gA

∑

i

〈
Sz

i

〉 + gB

∑

j

〈
σ z

j

〉
)

(2)

〈· · ·〉 denotes an equilibrium thermal average. After computing
the first derivative of magnetization χ = ( ∂ M

∂hex
)hex→0, we have

obtained the general expression of magnetic susceptibility for
the collinear normal ferrimagnetic spinel as follows:

χ =
(

μ2
B

3kBT

) (

NAg2
A
�S2 + NBg2

B �σ 2 + g2
A

∑

i �=i ′

〈�Si �Si ′
〉

+ g2
B

∑

j �= j ′

〈�σ j �σ j ′
〉 − 2gAgB

∑

i, j

〈�Si �σ j

〉)

, (3)

where NA and NB are the number of magnetic ions in sublattice
A and B, respectively.

Finally, a simple form of the magnetic susceptibility is
obtained:

χ =
(

μ2
B

3kBT

)
(
NAg2

A
�S2 + NBg2

B �σ 2 + NAg2
AγAA

+ NBg2
BγBB − 2NBgAgBγBA

)
. (4)

Following the procedure given in [12, 25], we compute
the expressions of spin correlation functions γAA, γBB and γAB

in terms of powers of β and mixed powers of J1 = 2JBB �σ 2,
J2 = 2JAB �S �σ and J3 = 2JAA �S2.

The correlation functions may be expressed as the
following:

γAA = �S2
7∑

q=1

q∑

m=0

q−m∑

n=0

q−m−n∑

p=0

a (m, n, p, q) J m
1 J n

2 J p
3 βq

γBB = �σ 2
7∑

q=1

q∑

m=0

q−m∑

n=0

q−m−n∑

p=0

b (m, n, p, q) J m
1 J n

2 J p
3 βq

γAB = �S �σ
7∑

q=1

q∑

m=0

q−m∑

n=0

q−m−n∑

p=0

c (m, n, p, q) J m
1 J n

2 J p
3 βq .

(5)

Nonzero coefficients a(m, n, p, q), b(m, n, p, q) and c(m, n,
p, q), up to order 7 on β are listed in tables 1, 2 and 3
respectively.

3. Series analysis and results

The simplest assumption that one can make concerning the
nature of the singularity of the magnetic susceptibility χ is that
in the neighbourhood of the critical point the function exhibits
an asymptotic behaviour.

χ(T ) ∝ (Tc − T )−γ . (6)

There are two standard methods for the analysis of series
expansions, namely:

(i) the ratio method and variation;
(ii) the Padé approximants method.
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Table 1. Nonzero coefficients c(m, n, p, q) of the correlation function γBA.

(m, n, p, q) c(m, n, p, q) (m, n, p, q) c(m, n, p, q) (m, n, p, q) c(m, n, p, q)

(1, 0, 0, 1) 2 (0, 1, 4, 5) 104/45 (1, 3, 3, 7) 872 398/3645
(0, 1, 1, 2) 8/3 (0, 3, 2, 5) 87 622/2025 (3, 1, 3, 7) 226 472/18 225
(1, 1, 0, 2) 34/9 (2, 1, 2, 5) 80/9 (0, 1, 6, 7) 81 584/42 525
(1, 1, 1, 3) 16/3 (0, 3, 3, 6) 1019 216/18 225 (0, 5, 2, 7) 171 526 118/382 725
(2, 1, 0, 3) 172/27 (2, 3, 1, 6) 221 953/729 (0, 6, 1, 7) 16/567
(0, 1, 2, 3) 8/3 (3, 1, 2, 6) 1792/135 (1, 6, 0, 7) 68/2835
(0, 3, 0, 3) 494/45 (2, 1, 3, 6) 10 112/1215 (5, 2, 0, 7) 8/315
(0, 3, 1, 4) 746/27 (1, 5, 0, 6) 2149 376/6075 (0, 3, 4, 7) 126 088 366/1913 625
(3, 1, 0, 4) 3868/405 (0, 5, 1, 6) 3860 318/18 225 (2, 5, 0, 7) 483 802 024/382 725
(2, 1, 1, 4) 80/9 (3, 3, 0, 6) 4452 341/18 225 (6, 1, 0, 7) 2038 348/76 545
(1, 1, 2, 4) 16/3 (4, 1, 1, 6) 848/45 (3, 3, 1, 7) 35 844 608/54 675
(0, 1, 3, 4) 112/45 (0, 1, 5, 6) 2032/945 (4, 1, 2, 7) 848/45
(1, 3, 0, 4) 1195/27 (5, 1, 0, 6) 808 316/42 525 (2, 1, 4, 7) 9424/1215
(2, 3, 0, 5) 701 276/6075 (1, 3, 2, 6) 3332 276/18 225 (6, 0, 1, 7) 16/2835
(3, 1, 1, 5) 1792/135 (1, 1, 4, 6) 1888/405 (1, 1, 5, 7) 1744/405
(4, 1, 0, 5) 5492/405 (4, 3, 0, 7) 41 712 593/91 125 (0, 7, 0, 7) 192 541 946/637 875
(0, 5, 0, 5) 33 316/567 (5, 1, 1, 7) 482 752/18 225 (0, 2, 5, 7) 8/567
(1, 3, 1, 5) 27 803/243 (2, 3, 2, 7) 135 323 753/273 375
(1, 1, 3, 5) 2024/405 (1, 5, 1, 7) 2506 351 409/1913 625

Table 2. Nonzero coefficients b(m, n, p, q) of the correlation function γBB.

(m, n, p, q) b(m, n, p, q) (m, n, p, q) b(m, n, p, q) (m, n, p, q) b(m, n, p, q)

(1, 0, 0, 1) 2 (1, 4, 0, 5) 1416 524/6075 (1, 6, 0, 7) 630 901 223/382 725
(2, 0, 0, 2) 10/3 (0, 2, 3, 5) 4024/405 (0, 2, 5, 7) 218 516/25 515
(0, 2, 0, 2) 22/3 (5, 0, 0, 5) 15 616/1575 (0, 4, 3, 7) 11 784 542/54 675
(3, 0, 0, 3) 224/45 (1, 2, 2, 5) 9856/243 (0, 6, 1, 7) 99 633 071/127 575
(1, 2, 0, 3) 739/27 (6, 0, 0, 6) 592 664/42 525 (4, 2, 1, 7) 148 310 524/382 725
(0, 2, 1, 3) 92/9 (0, 2, 4, 6) 11 216/1215 (2, 2, 3, 7) 1849 297/18 225
(0, 4, 0, 4) 5528/135 (2, 4, 0, 6) 325 121/405 (1, 4, 2, 7) 268 887 851/273 375
(0, 2, 2, 4) 284/27 (1, 2, 3, 6) 47 072/1215 (1, 2, 4, 7) 131 708/3645
(4, 0, 0, 4) 106/15 (1, 4, 1, 6) 11 051 807/18 225 (3, 4, 0, 7) 4108 034 257/1913 625
(1, 2, 1, 4) 1049/27 (2, 2, 2, 6) 127 876/1215 (5, 2, 0, 7) 24 520 799/54 675
(2, 2, 0, 4) 3097/45 (3, 2, 1, 6) 758 651/3645 (7, 0, 0, 7) 12 441 284/637 875
(2, 2, 1, 5) 40 231/405 (0, 6, 0, 6) 1097 084/5103 (3, 2, 2, 7) 489 181/2187
(3, 2, 0, 5) 172 586/1215 (0, 4, 2, 6) 2998 372/18 225 (2, 4, 1, 7) 4669 868/2187
(0, 4, 1, 5) 125 788/1215 (4, 2, 0, 6) 3702 346/14 175

Table 3. Nonzero coefficients a(m, n, p, q) of the correlation function γAA.

(m, n, p, q) a(m, n, p, q) (m, n, p, q) a(m, n, p, q) (m, n, p, q) a(m, n, p, q)

(0, 0, 1, 1) 4/3 (0, 4, 1, 5) 706 946/6075 (3, 2, 3, 7) 915 829/6075
(0, 2, 0, 2) 53/9 (1, 4, 0, 5) 167 294/1215 (5, 2, 0, 7) 6620 456/382 725
(0, 0, 2, 2) 4/3 (0, 0, 5, 5) 1016/945 (2, 4, 1, 7) 386 566 502/273 375
(1, 2, 0, 3) 116/9 (0, 2, 3, 5) 88/3 (1, 6, 0, 7) 675 001 052/637 875
(0, 2, 1, 3) 404/27 (1, 2, 3, 6) 9434/135 (0, 2, 5, 7) 4803 382/127 575
(0, 0, 3, 3) 56/45 (0, 2, 4, 6) 867 712/25 515 (0, 4, 3, 7) 84 221 632/212 625
(1, 2, 1, 4) 2788/81 (2, 4, 0, 6) 2254 517/6075 (0, 6, 1, 7) 301 410 296/382 725
(2, 2, 0, 4) 1802/81 (0, 0, 0, 6) 41 152/42 525 (4, 2, 1, 7) 1496 656/10 935
(0, 2, 2, 4) 1028/45 (3, 2, 1, 6) 340 796/3645 (2, 2, 3, 7) 50 792/405
(0, 4, 0, 4) 4364/135 (1, 4, 1, 6) 9330 116/18 225 (1, 4, 2, 7) 59 782 103/54 675
(0, 0, 4, 4) 52/45 (2, 2, 2, 6) 7750/81 (1, 2, 4, 7) 6224 368/76 545
(2, 2, 1, 5) 14 620/243 (0, 6, 0, 6) 860 921/5103 (3, 4, 0, 7) 44 023 634/54 675
(3, 2, 0, 5) 41 386/1215 (0, 4, 2, 6) 885 472/3645 (0, 0, 7, 7) 21 856/25 515
(1, 2, 2, 5) 7267/135 (4, 2, 0, 6) 179 194/3645

We shall use the second method to obtain estimates for
the critical parameters Tc and γ for the ferrimagnetic spinel.
Excellent reviews of these methods are available [24, 25].

The Padé approximants [23] method attempts to represent
the magnetic susceptibility as a quotient of two finite
polynomials with degrees M and N . The singularities of the

function are then estimated by computing the zeros of the
denominator polynomial.

The usual approach is to compute the series for the
logarithmic derivative of χ(T ),

d

dT
log [χ(T )] ≈ −γ

T − Tc
(7)
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R

Figure 1. The critical exponent γ (solid line) and R, representing the
ratio of inter-to intraplanar correlations, (dashed line) as a function of
the intra-sublattice JBB for JAA = 0.

as this function has a simple pole Tc and should be well
represented by Padé approximants [M, N]. The exponent γ

is then re-estimated from the approximates to

(T − Tc)
d

dT
log [χ(T )] (8)

evaluated at T = Tc.
We have calculated the values of the critical exponent γ

as a function of intra-sublattices exchanges integrals JAA and
JBB, and for arbitrary values of spins for the series up to order
7. This procedure was repeated for series up to order 6 and
5. Between the order 6 and 7, the analysis of the series is not
affected significantly. The approximants are well converged
and estimates are accurate to high precision ∼1%. When the
number of terms decreases from 6 to 5, the analysis of the
series shows that estimates of γ increase by 10%. For short
series n � 4 the accuracy in the calculation is not expected to
be high.

The gyromagnetic factors gA and gB were assumed to be
equal to 2. For all the cases, JAB = −1 K. It is necessary to
point out here that we will not take into account the stability of
the spin configuration.

First, we analyse the case where JAA is weaker (i.e. JAA =
0). The behaviour of γ with JBB is reported in figure 1. From
this figure, we can see that the critical exponent (i) decreases
rapidly with increasing antiferromagnetic JBB value until a
minimum (γ = 1.2433), (ii) increases and tends to be constant
(γ = 1.3838) for large ferromagnetic value of JBB. To
examine this variation, we display in the same figure the
behaviour of the ratio R of inter-sublattice correlations to
the intra-sublattice correlations. We remark that for large
ferromagnetic values of JBB and weak values of R, the value of
γ is close to that of the 3D Heisenberg model [26, 27]. There
is no interaction between the spins in sublattices A and B. The
system can be considered as a B-spinel lattice (only the B-
sites are occupied by magnetic ions) with consistent critical
exponent. When the effect of inter-sublattice correlation is

R

Figure 2. As in figure 1 but with JAA = JBB.

Figure 3. As in figure 1 but with JAA = −JBB.

more pronounced, R increases and γ takes the value of Ising-
like system [26]. For the large values of R(JBB < −1 K), the
frustration becomes very important and will be responsible for
the net divergence of γ .

In figure 2, we present the case where JAA is equal to
JBB. The dependence of the critical exponent γ on the intra-
sublattice exchange coupling is similar to that of figure 1. The
minimum of γ is 1.3259. This value is somewhat similar to
that of the known XY model [28].

From the plot of the ratio R, we note that the intra-
sublattice correlations are important in the antiferromagnetic
exchange integral JBB region and as consequence γ takes the
value of the planar model. For JBB < −0.25, γ diverges
as a consequence of the strong frustration between different
interactions in sublattices A and B.

We have also examined the case where JAA = −JBB.
Figure 3 illustrates the critical exponent versus the intra-
sublattice exchange integralJBB. It can be seen that the curve
has two minima (γ = 1.2747 and 1.2938) and diverges for
large values of JBB when the frustration is strong. The major

4
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Table 4. The critical temperature and critical exponent γ for the magnetic susceptibility of FeCr2S4.

[M, N] [3, 2] [4, 2] [3, 3] [4, 3] [1, 4] [2, 4] [1, 5] [2, 5]

Tc 176.788 176.824 178.556 178.797 176.725 178.587 176.889 178.730
γ 1.307 1.309 1.321 1.307 1.329 1.326 1.322 1.322

Table 5. The critical temperature and critical exponent γ for the magnetic susceptibility of CoCr2S4.

[M, N] [3, 2] [4, 2] [3, 3] [4, 3] [1, 4] [2, 4] [1, 5] [2, 5]

Tc 239.393 241.349 240.303 239.725 241.421 240.267 240.447 239.429
γ 1.300 1.312 1.326 1.300 1.330 1.327 1.326 1.330

frustrations among spins arise from the competition between
the ferromagnetic and antiferromagnetic interactions within
and between spins in sublattices A and B. The ratio R governs
the behaviour of γ versus exchange interactions.

Finally, we apply this model to magnetic spinel
semiconductors FeCr2S4 and CoCr2S4. Both systems are
normal spinel ferrites with collinear configuration. The
physical parameters are taken from reference [29] and are: for
FeCr2S4, the exchange couplings are JFe−Cr = −10 K and
JCr−Cr = −0.95 K, the gyromagnetic factors are gCr = 1.98
and gFe = 2.1. The system presents ferrimagnetic order below
the critical temperature Tc = 177 K. For CoCr2S4, JCo−Cr =
−17.5 K, JCr−Cr = −2.3 K and gCo = 2.3. The system
presents ferrimagnetic order below the critical temperature
Tc = 240 K. In the two systems the interaction between Fe–Fe
and Co–Co is negligible.

The sequences of [M, N] Padé approximants to the series
have been evaluated and are presented in tables 4 and 5. The
estimated critical temperatures are in good agreement with the
experimental values found in FeCr2S4 and CoCr2S4.

4. Conclusion

In this paper, high-temperature series expansion (HTSE) of
the spin correlation functions of a normal ferrimagnetic spinel
lattice is computed to order 7 in β = 1

kBT for the Heisenberg
model. For the sake of convenience, we have taken only the
first inter-(JAB) and intra-sublattice interactions (JAA, JBB).
HTSEs extrapolated with the Padé approximants (PA) method
are shown to be convenient to provide a valid estimation of
parameters associated with the critical region. The theoretical
considerations provide a useful tool for a straightforward
interpretation and understanding of experimental data of any
ferrimagnetic spinel lattice. A net variation of critical exponent
γ , associated with magnetic susceptibility, with exchange
coupling has been observed. This variation presents some
unusual characteristics. We cannot claim to understand
what causes γ to behave in this fashion. Nevertheless, an
instructive phenomenological picture in view of the magnetic
symmetry of the interactions in the system may be given.
The magnetic asymmetric interactions and the competition
between the exchange couplings are important for the magnetic
phase transition in a ferrimagnetic spinel. In particular, we
have three distinct regions: for the symmetric region (weak
values of R), γ tends to the value predicted by the Heisenberg

model. In the asymmetric region, γ approaches the values
predicted by the Ising model. For the highly frustrated system,
γ is large. It was argued that the critical properties of a
variety of frustrated magnets are often different from those of
conventional unfrustrated magnets [28].

The application of the present theory to particular
chalcogenide spinels FeCr2S4 and CoCr2S4 gives the estimates
values of critical temperature Tc and critical exponent γ .

The sequences of [M, N] PA to the series have been
evaluated. By examining the behaviour of these PA, the
convergence was found to be quite rapid; and we expect the
result to be accurate to within 1%. Estimates of the critical
exponents associated with magnetic susceptibility are found
to be γ = 1.317 for FeCr2S4 and γ = 1.328 for CoCr2S4.
The central values of the obtained critical temperatures are
Tc = 177.74 K for FeCr2S4 and Tc = 240.42 K for CoCr2S4.
These values are in good agreement with the experimental ones
given in [29].

Finally, the study of the critical properties of systems with
ferrimagnetic spinel structure in the framework of HTSEs that
takes into account magnetic correlations is very significant and
may bring an important correction in a relatively simple way.
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